
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPTIMAL TRANSPORT-BASED DOMAIN ALIGNMENT
AS A PREPROCESSING STEP FOR FEDERATED
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning is a subfield of machine learning that avoids sharing local data
with a central server, which can enhance privacy and scalability. The inability
to consolidate data in a central server leads to a unique problem called dataset
imbalance, which is where agents in a network do not have equal representation
of the labels one is trying to learn to predict. In FL, fusing locally-trained mod-
els with unbalanced datasets may deteriorate the performance of global model
aggregation; this further reduces the quality of updated local models and the ac-
curacy of the distributed agents’ decisions. In this work, we introduce an Optimal
Transport-based preprocessing algorithm that aligns the datasets by minimizing
the distributional discrepancy of data along the edge devices without breaking pri-
vacy concerns. We accomplish this by leveraging Wasserstein barycenters when
computing channel-wise averages. These barycenters are collected in a trusted
central server where they collectively generate a target RGB space. By projecting
our dataset towards this target space, we minimize the distributional discrepancy
on a global level, which facilitates the learning process due to a minimization of
variance across the samples in the analyzed network. We demonstrate the capa-
bilities of the proposed approach over the CIFAR-10 dataset, where we show its
capability of reaching higher degrees of generalization in fewer communication
rounds.

1 INTRODUCTION

Federated learning (FL) is a subfield of machine learning (ML) that tackles decentralized, or dis-
tributed, learning. It lends itself as a solution to machine learning problems where datasets cannot
be shared due to privacy concerns (McMahan et al., 2017) and, in turn, enhances scalability. Its
privacy-centered approach led to its adoption in various fields, such as healthcare (Xu et al., 2021;
Rieke et al., 2020). Another interesting paradigm tackled by FL is the personalization of models
where the expected behavior varies from user to user in the network. In Tan et al. (2022), the authors
perform a comprehensive dive over the challenges and use cases of personalized federated learning.

While FL has a myriad of applications, especially with the increasing regulations on personal data,
its constraints must be carefully handled to ensure the stable training of models. These constraints
include transmission rates, computational power at the edge, privacy, and dataset imbalance. The
problem of imbalanced datasets, as can be seen in Li et al. (2020), arises when edge devices do not
all have the same number of samples of each predicted class and/or have different training dataset
sizes; this can equivalently mean they have different generating distributions. Similarly, the quality
of the local data provides another obstacle in this setting (Wu et al., 2023). Both of these issues create
imbalanced representations that worsen the learning process. Our goal is to tackle this imbalance
problem by looking at it as an alignment of the different local generating distributions. To this end,
we design a preprocessing mechanism that is model- and learning algorithm-agnostic and allows for
a transformation of the local data to a distribution space comprised of information from all agents in
the network.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 RELATED WORKS

The issue of dataset imbalance, also known as the domain-distribution discrepancy problem or the
multiple-source domain problem, has been a core challenge in federated learning. In this section,
we will review various approaches to address this challenge. To our knowledge, our approach is the
first of its kind in terms of performing a zero-shot alignment and the second to introduce optimal
transport (OT) to perform a distribution alignment in FL. While it may be interesting to think of
various preprocessing techniques to compare against, to our knowledge, none exist. In our research,
we have only seen local alignments and processing techniques such as feature normalization (e.g.,
min-max scaling) or standardization (e.g., Z-score scaling). While these techniques are useful to
help train models by scaling feature values to desirable ranges, they do not align samples across
agents. The lacking literature further supports the importance of our idea.

The most relatable work we have found is that of Farnia et al. Farnia et al. (2022) where the au-
thors introduce an OT-based alignment step during the process of training the model. Their work
is comprised of an iterative approach to both computing the projection map and the space they are
projecting to. The authors begin by extending the standard OT task between two distributions to
a multi-marginal OT problem. They then use these results to create a min-max optimization prob-
lem which leads to their algorithm called FedOT. While FedOT introduces a dynamic approach to
learning the necessary maps to transform the data, we instead bypass this step. Rather than itera-
tively learning a transport map and the target space, we instead compute the target space using a two
step approach (described later as an RGB-wise Wasserstein barycenter) and then leverage Ferradans
et al. (2014) which demonstrates how to compute the alignment map. Our approach introduces two
benefits. First, by computing the target space in one shot rather than dynamically, we align images
to a unified representation. Secondly, by simplifying the alignment process, we lower computation
cost by removing the iterative process that is needed to learn the map which is then used to perform
the alignment.

In Wang et al. (2022), Wang et al. comprehensively surveyed the field of domain adaptation. They
describe three primary techniques used to solve this problem: data manipulation, representation
learning, and learning strategy. Out of the diverse list of papers surveyed, few are directly solving
the problem. First, Chen et al. (2020) focuses on personalization through transfer learning. The
pseudo domain generalization occurs in the transfer step, as the FedHealth algorithm aligns the
lower levels of the convolutional neural network aggregated in the cloud with those locally stored,
and personalized, in each agent’s device. On the other hand, in Wu & Gong (2021), Wu and Gong
tackle the learning strategy approach of domain generalization (DG) and unsupervised domain adap-
tation (UDA). In their algorithm, called Collaborative OPtimization and Aggregation (COPA), each
agent in the network contains a local dataset, a feature extractor, and a classifier. The local feature
extractors are collected to create a global feature extractor that is domain-invariant. The local clas-
sifiers are ensembled to create the global classifier. These global models are used to update the local
models. After various iterative updates, COPA was able to converge to a point where it was com-
parable with state-of-the-art algorithms that focused on DG and UDA. Lastly, Zhang et al. (2021)
subscribe to the “learning strategy” approach to solving domain generalization. They accomplish
this through their algorithm FedADG, which uses an adversarial component to measure and then
align different source distributions to a globally known, shared distribution. Similarly to COPA,
their algorithm also focuses on learning a domain-invariant feature. While FedADG improves on
some test cases, the authors mention their approach to generating invariant features yields results
that are typically worse than an OT-based approach called L2A-OT (Zhou et al., 2020).

Thus far, we have covered papers that are directly related to our work. We now focus on other re-
search that indirectly tackles, or at least provides, a direction to work with imbalanced datasets. We
first turn to clustering in federated learning. In Sattler et al. (2020), Sattler et al. propose their main
algorithm, clustered federated learning (CFL), which relies on a generalization of the FL problem:
“There exists a partitioning of the clients such that all clients in each partition satisfy the conven-
tional FL problem.” The “conventional problem” implies there exists one model that can fit all data
distributions across the network. In an imbalanced dataset paradigm, the agents’ data-generating
distributions are different. To overcome the inability of FL to handle this problem, CFL clusters
the incoming gradients of the agents through a recursive cosine similarity-based bipartitioning and
then updates the model’s parameters once for each cluster by averaging the gradients of the clients
in each cluster respectively.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Federated learning architecture.

Moreover, in Hsu et al. (2020), Hsu et al. explore dataset imbalance in the unique datasets they
created which allowed them to analyze the degree of imbalance based on geo-location tagging and
distributional statistics. To tackle the class distribution shift problem in FL, they began with, FedAvg,
short for federated averaging (McMahan et al., 2017), and updated it to include variance mitigation
and a resampling strategy via adding weights to each agent. Their algorithms, respectively called
FedVC and FedIR, computed the weights as a ratio of the target joint distribution of images and class
labels and a sampled joint distribution of a specific client’s image-label pair. The authors propose
the assumption that the conditional distribution of an image sample x and its label y is equivalent, or
a close approximate, to each agent’s conditional; this assumption allowed through Bayes theorem to
reformulate the weight function as a ratio of the global distribution of class y and the agent’s local
distribution of class y. The weights are used to scale the updates of the global model sitting in the
trusted server and lead to better accuracy.

Lastly, personalization is an interesting direction because it has been both used as a solution to the
aforementioned problem and also as an application to improve local, customized, solutions for FL.
Fallah et al. present MAML an algorithm that trains an “initial shared model” which is updated using
a few gradient steps to yield a good, personalized model (Fallah et al., 2020). For more algorithms
regarding personalization, we refer readers to Tan et al. (2022).

3 PRELIMINARIES

3.1 FEDERATED LEARNING

The goal of federated learning (FL) is to train a single (global) model that can make accurate predic-
tions across all agents in a network. A typical FL architecture can be seen in Figure 1. FL problems
contain constraints, some of which include: computational power at the edge, communication band-
width, and data heterogeneity. Privacy is one of the key motivations for using FL which prevents
the amalgamation of data in a central server and the use of traditional techniques. To overcome
this problem, FL research introduced novel techniques that are typically a variation of parameter
averaging or gradient averaging. A more comprehensive look at the challenges of FL and associated
solutions can be found in Li et al. (2020). Independently of the approach, at its core, FL looks for a
solution to

min
w

f(w), f(w) =

A∑
a=1

pafa(w) (1)

where A is the number of devices in our network, pa ≥ 0, and
∑

a pa = 1. Each agent has a local
objective, fa(w), which is averaged together as the global objective f(w). For more details into
equation 1, we refer readers to Li et al. (2020) and Imteaj et al. (2021).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 OPTIMAL TRANSPORT

Optimal Transport (OT), also known as the Monge-Kantorovich problem, is a mathematical frame-
work that addresses the problem of finding the most cost-efficient way to transport mass from a
source distribution to a target distribution (Torres et al., 2021). OT was originally formulated by
Gaspard Monge in the 18th century (Monge, 1781). In the 20th century, the problem was refined
by soviet mathematician Kantorovich and has since found widespread applications in various fields,
including economics, computer vision, machine learning, and statistics. At its core, OT seeks to
quantify the discrepancy between two probability distributions by defining a distance metric that
considers both the magnitudes of the masses being transported and the distances over which they
are moved. Unlike traditional distance metrics, such as Euclidean distance, which focus solely on
point-to-point comparisons, OT provides a more geometrically nuanced measure that captures the
structural similarities between distributions.

We begin by looking at Monge’s original problem over discrete spaces for simplicity, but continuous
equivalents exist. Given discrete measures α, β, the Monge Map is given by

min
T

{ n∑
i=1

c(xi, T (xi)) : T#α = β

}
(2)

Monge’s problem is asking for a surjection from the source distribution to the target distribution,
as can be seen by the restriction on T , a push-forward operator. Simply said, T ensures mass is
preserved during the transportation. While this formulation is simple to read, it is extremely difficult
to solve due to non-convexity and degeneracy. Kantorovich sought to fix this by introducing the
concept of mass-splitting. Where Monge required all the mass from any point in the domain to be
mapped to one point in the target distribution, mass-splitting allows the mass from the domain to
be broken up and mapped to different locations in the codomain. The OT problem, now called the
Monge-Kantovorich problem, reads as follows:

LC(a,b) = min
P∈U(a,b)

⟨C,P⟩ =
∑
i,j

Ci,jPi,j , (3)

given the set of admissible couplings

U(a,b) =
{
P ∈ Rn×m

+ : P1m = a,PT
1n = b

}
Intuitively, one is looking for a permutation matrix P that determines how to distribute mass in a
cost-minimizing fashion given the transportation cost C.

OT presents a novel approach to comparing two probability distributions. With additional con-
straints, OT yields a metric, or a distance function, called the Wasserstein metric, or Earth Mover’s
Distance. Suppose that for some p ≥ 1 and C = Dp where D ∈ Rn×n is a distance on [[n]],

1. D is symmetric,
2. diag(D) = 0,
3. ∀(i, j, k) ∈ [[n]]3,Di,k ≤ Di,j + Dj,k

then the p-Wasserstein distance is

Wp(a,b) = LDp(a,b)1/p. (4)

Equipped with a distance function, we can now define an averaging function, called a Wasserstein
barycenter (WB):

min
a∈Σn

S∑
s=1

λsW
p
p (a,bs), (5)

where λs is a real-valued weight (usually a uniform distribution such that each input probability
vector is given an equal amount of importance Cuturi & Doucet (2014)) and Σn is a probability

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

simplex with n bins. Intuitively, given a set of input probability vectors bs, we are looking for a
probability vector a that minimizes the weighted sum of the p-Wasserstein distance between a and
each b.

There are different methods to solve the optimal transport problem and to compute Wasserstein
barycenters. The current state-of-the-art methods rely on entropic regularization. In Cuturi (2013),
Marco Cuturi introduces a solution to quickly solve the entropy regularized OT problem, Wreg(a,b),
using Sinkhorn’s algorithm, which now reads: For λ > 0,

dλM (a, b) = ⟨Pλ, C⟩, (6)

where

Pλ = argminP∈U(a,b)⟨P,C⟩ − 1

λ
h(P ).

Equipped with a computational method to solve the OT problem, Benamou et al. leveraged iterative
Bregman projections to compute the entropic regularized Wasserstein barycenter, which can be seen
in Benamou et al. (2015), leading to a faster and more general solution. The entropic regularized
barycenter problem can be written as an extension of equation 5:

min
a∈Σn

S∑
s=1

λsWreg(a,bs) (7)

where λ = {λs}Ss=1 ∈ ΣS .

4 OPTIMAL TRANSPORT-BASED PREPROCESSING

In this section, we introduce the preprocessing step that minimizes the distributional discrepancy in
our network. We achieve this distribution-alignment goal by generating a target space to which we
project all local data. The target space is generated from all data without losing privacy because
WBs obfuscate the data in an irreversible fashion (more clarifications on the prevention of privacy
leakage can be seen in A.1. Our proposed method has two main steps: the creation of the target
space, and the projection step to perform alignment.

To create a relevant target space to align images to, it needs to contain information from all the
agents in the network. We accomplish this in a two-step fashion. First, we compute representations
of the local data through a channel-wise Wasserstein barycenter of the local images. The approach
requires separating each local image its three color channels, grouping them by the respective color
channels, and lastly computing the WB for each channel. Figure 2 demonstrates this workflow.
In this work, we are using colored images, therefore, channel-wise implies red, green, and blue
channels. The local computations produce an RGB-triplet called the local WBs. Next, the second
step is to generate the target space by aggregating all local WBs in a central server, and repeating the
same process of computing channel-wise barycenters; this yields the RGB-tripled called the global
WB, or our target space. Readers will notice the steps just explained cover steps one and two of
Figure 3.

The final steps of our preprocessing algorithm are steps three and four in Figure 3. First, we broad-
cast the global barycenters to the agents in the network. Then, we align the local images to tar-
get space by projecting them to the global WB. The projection process is composed of computing
transportation plans to the target space that allows the color channels of the original images to be
transferred and aligned, similarly to computing color transfer maps or domain adaptation in Fer-
radans et al. (2014); Courty et al. (2016) respectively. The entire preprocessing steps just described
is explicitly laid out in algorithm 1. For more in-depth information on the implementation details of
the steps just described, we refer readers to A.2.

Lastly, there are various custom variable names in the algorithm 1. To facilitate going through the
algorithm, we will define them here. WBa

r , WBa
g , and WBa

b are the Wasserstein barycenters of
agent a for channels red, green, and blue respectively. The terms Imgred

i , Imggreen
i , and Imgblue

i

imply, respectively, the red, green, and blue channels of the ith image. Furthermore, WBG is the
target space (the global Wasserstein barycenter) composed of the global RGB-triplet.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Image 1

Image N

Red Channel

Green Channel

Blue Channel

Red Channel

Green Channel

Blue Channel

Red

Green

Blue

WB

WB

WB

WBred

WBgreen

WBblue

Local 
Representation 

Figure 2: Channel-wise WB of local images.

Algorithm 1 OT-based preprocessing

Definitions: Let B = {bs}Ss=1 such that WB(B) is the solution to equation (7).

For each agent a = 1, 2, . . . , N
R = {Imgred

i }Mi=1

G = {Imggreen
i }Mi=1

B = {Imgblue
i }Mi=1

WBa
r = WB(R)

WBa
g = WB(G)

WBa
b = WB(B)

Distribute WBa
r , Wa

g , WBa
b to a central server

RG = {WBa
r}Na=1

GG = {WBa
g}Na=1

BG = {WBa
b}Na=1

WBG
r = WB(RG)

WBG
g = WB(GG)

WBG
b = WB(BG)

WBG = {WG
r ,WBG

g ,WBG
b }

Distribute WBG to all agents
For each agent a = 1, 2, . . . , N

For each image i = 1, 2, . . . ,M of agent a
Project image i → WBG

Output: Local datasets are transformed through the projections and are ready to be used for
learning given any FL algorithm

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Step 1. Uniform Sampling without 
replacement.

Original 
Dataset

A1

A2

AN

Step 2. Compute local barycenters and 
aggregate in central server.

Central 
Server

A1

A2

AN

Local barycenter triplet

Loca
l b

aryc
enter tr

iplet

Local barycenter triplet

Step 3. Compute global barycenter and 
broadcast.

Central 
Server

Global 
WB

Triplet

A1

A2

AN

Step 4. Project local images to global barycenter.

AN

Img1 Img2

… ImgM

Global 
WBProj

A2

Img1 Img2

… ImgM

Global 
WBProj

A1

Img1 Img2

… ImgM

Global 
WBProj

Figure 3: This image is a visual representation of the preprocessing algorithm given a network with
N agents which contain M local images.

5 EXPERIMENTS AND RESULTS

The goal of our paper is to demonstrate the functionality and utility of our preprocessing step in
federated learning. Our framework is built independently of the learning algorithm, which allows
for flexible integration into any FL pipeline that may have different goals (e.g., increase privacy
through differential privacy solutions to FL). Nonetheless, to demonstrate the advantages of using
our preprocessing step, we require a learning algorithm. To this end, we chose to work with federated
averaging, FedAvg, which trains local algorithms and performs parameter averaging to aggregate the
local models into a global model. To show the improvements our method provides to the learning
process, we designed a few experiments. Each experiment begins with the following common setup
steps. First, we design the network by choosing the number of agents that make up our network.
Next, we initialize their models identically (we refer readers to A.2 for implementation details such
as hyperparameters). Starting with equivalent initial conditions is currently a requirement for FL,
otherwise averaging these models can yield “arbitrarily bad models” (McMahan et al., 2017; Good-
fellow et al., 2015). The base model architecture is a convolutional neural network (CNN) with
roughly one million parameters and can be seen in Figure 5. Next, we distribute the data randomly
by uniformly sampling, without replacement, images. By sampling uniformly without replacement,
we ensure that each agent has varying amounts of data and are not completely homogenous (mean-
ing each agent has equal number of images per class), which introduces additional difficulties during
training. With the data distributed to the edge devices, we use our preprocessing algorithm (1) to
align them. Once the data is aligned, we use FedAvg to train a global model.

There are various ways of deciding when to perform the synchronization step, which is where pa-
rameter averaging happens. Similar to other works, we run more than one epoch per synchronization
step. On one hand, choosing one epoch per accumulation step did not induce sufficient local training.
Conversely, too many local epochs resulted in local overfitting and yielded worse global outcomes.
To demonstrate complete results, we ran simulations where all agents contributed to learning the
global model and also ran simulations where a random selection of agents contributed (the agents
were sampled according to a uniform distribution). As per convention, this is labeled N/P where
N is the total number of agents in the network and P is the number of agents that participate in
training the global model. In experiments where N = P , we used two local training epochs per

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) (b) (c)

Figure 4: The images represent the results of a simulation with 10 agents and using all 10 agents to
train the global model. The graphs are made by sampling 5 of the 10 agents to show their respective
local models and the final global model. In all graphs, we plot a baseline of FedAvg without align-
ment and FedAvg with our “OT-aligned” preprocessing. (a) Accuracy of local models on training
data. (b) Accuracy of local models on test data. (c) Accuracy of the global model on test data.

synchronization step as it resulted in the smoothest global accuracy curve. When P << N , the
number of samples in the local dataset becomes extremely small, closer and closer to the batch size.
Therefore, we need to increase the number of local epochs to ensure sufficient training. For these
scenarios, we raised the local epoch count to five. The results of our simulations are shown in tables
1.

In table 1, the first column shows the number of agents in the network and the second shows the
number of synchronization steps required to achieve the respective accuracy score. One thing to
note is the increasing number of epochs as we increased N , the number of clients. To ensure our
results showed the maximum potential of both algorithms, ours and traditional FedAvg, we aimed to
train until convergence, which was only possible by training the models for longer periods. While
the number of communication rounds seems quite large, there are two facts readers should take
into consideration. First, our model is smaller than used in other work. While this choice was
arbitrary and meant to be a placeholder to ensure proper simulations, early experimental results
showed high accuracy scores and presented an, originally unknown, additional benefit. Second,
we have demonstrated the best generalization of current standing work. Moreover, our choice of
learning algorithm, FedAvg is quite simple, and therefore pairing our preprocessing algorithm with
more efficient learning techniques will only serve to improve convergence speed while maintaining
higher accuracy. As we can see in table 1, FedAvg with our preprocessing step yields higher accuracy
across the board. For a closer inspection, we graphed the results for the simulation with N = P = 5
in Figure 4. Figure 4a shows a plot of the local models’ training accuracy for both FedAvg without
OT-preprocessing, labeled the “Baseline,” and OT-preprocessed, labeled “OT-Aligned.” Figure 4b
plots the testing accuracy of the local models. Lastly, Figure 4c demonstrates the results of the
respective global model on the testing dataset under both paradigms. These plots also demonstrate
a faster rate of convergence which can be seen given all choices of N,P in our experiments. While
we have thus far shown results for a custom CNN, we provide further explanations for this choice,
along with additional simulations using a ResNet, in A.3.

Lastly, table 2 shows a comparison of our algorithm with other approaches. The results for a non-iid
dataset paradigm for these various algorithms can be found, respectively, in the cited work column,
or collectively in Luo et al. (2021) where the authors compile results and compare them against
their proposed method (CCVR). Our OT-preprocessing algorithm, paired with FedAvg, an algorithm
known for its simplicity, yielded the best results. Our simulations, while not using the exact same
hyperparameters, are undoubtedly comparable since it is simpler, uses a significantly smaller model,
and yields higher accuracy. These facts open the door for improvement via the merging of our

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Convolutional neural network architecture used in our experiments.

Table 1: This table contains a comparison between FedAvg with and without our OT-preprocessing
algorithm where all agents contributed to training the global model. The first column of the table
demonstrates the number of clients in the simulated network (N) and the number of clients used to
train the global model (P). The second column is the number of synchronization steps.

Client (N/P) Communication Rounds FedAvg + OT-Preprocessing FedAvg
5/5 35 99.62 71.22

10/10 70 99.33 70.48
20/20 200 99.36 69.89
50/50 250 97.84 69.73

100/100 500 94.95 65.01
10/5 100 99.85 71.34

20/10 150 97.5 65.66
50/10 500 95.04 66.45
100/10 1000 93.34 66.16

work with algorithms that are tailored for other applications. For example, differential privacy-
based methods that focus more on privacy may be able to increase both their privacy levels while
increasing utility when paired with our algorithm. The methods listed in our comparison table are
also applied in heterogeneous .

6 COMPLEXITY ANALYSIS

An important tradeoff to consider with our algorithm is the additional time that must be paid to
convert the original dataset into an aligned dataset. As our method does not affect the learning
algorithm, we only analyze the complexity of computing the barycenters and projecting the local
data to the global barycenter, which is done prior to training. Therefore, this is an additional cost paid
in addition to training. First, Kroshnin et al. (2019) gives us a complexity analysis for the iterative
Bregman projection method of computing regularized barycenters, as introduced by Benamou et al.
(2015). Given n samples of dimension d and regularization parameter ϵ, we have a complexity
of O(nd2/ϵ2). Moreover, the projection of the local images onto the global barycenters requires
solving the OT problem. Cuturi (2013) demonstrates an empirical complexity of O(d2) with respect
to the input dimension d. The complexity of our preprocessing is a combination of these two,
contingent on the number of agents. Assume we have N agents in our network, each with M
images. We must compute N barycenters. Since these are computed in parallel, the time complexity
is equivalent to computing one, with the addition of computing the global barycenter. Therefore, we
have O(Md2/ϵ2) for local barycenters and O(Nd2/ϵ2) for the global barycenter. The projection
time complexity is scaled in accordance with M , not N , as each agent projects in parallel. Therefore,
the overall time complexity for our preprocessing algorithm is O(Md2/ϵ2)+O(Nd2/ϵ2)+O(Md2).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: This table compares the results of various approaches to federated learning. The first two
rows are direct results from our experiments. The subsequent rows are results obtains from the
respective papers. Readers should look at the cited work for implementation details which lead to
the varying accuracy scores for the same algorithms (as can be seen below).

Reference Method Accuracy
Our work FedAvg + OT-Preprocessing (N = 100, P = 10) 93.34

(McMahan et al., 2017) FedAvg (N = 100, P = 10) 66.16
(Li et al., 2021) MOON 69.1
(Li et al., 2021) FedAvg 66.3
(Li et al., 2021) FedProx 66.9
(Li et al., 2021) SCAFFOLD 66.6
(Li et al., 2021) SOLO 46.3

(Wang et al., 2020) FedMA 87.53
(Wang et al., 2020) FedProx 85.32
(Wang et al., 2020) FedAvg 86.29
(Luo et al., 2021) FedAvg (CCVR) 71.03
(Luo et al., 2021) FedProx (CCVR) 70.99
(Luo et al., 2021) FedAvgM (CCVR) 71.49
(Luo et al., 2021) MOON (CCVR) 71.29

If the local number of images vary per agent, the worst-case complexity is the same and requires
only setting M = argmaxiMi for agents i = 1, . . . , N .

7 CONCLUSION

In this work, we demonstrate the ability of our preprocessing algorithm to improve the convergence
speed and generalization of traditional federated learning. We accomplish this by projecting local
data to a space that encodes all local data. The projection to the same local space minimizes the
distributional discrepancy between agents given a heterogeneous distribution of data. After aligning
the local datasets, we train a model using FedAvg; this is an arbitrary choice, allowing any learning
algorithm to be paired with our method. Our simulations show superior results than FedAvg and
other comparable work, all of which do not contain preprocessed datasets. In comparison with the
original work of McMahan et al. (2017), not only do we reach higher accuracy scores, but we do
so with a model of fewer parameters. Our algorithm can be leveraged in any FL paradigm and
paired with any learning algorithm as its functionality is in preprocessing the data to minimize the
distribution discrepancy among different agents. Our work opens the door for future work where our
preprocessing algorithm is fused with already existing learning-based algorithms. These potential
fusions can lead to faster convergence and better generalization of already existing methods.

8 FUTURE WORK

In this work, we a presented novel idea for preprocessing colored images (i.e. CIFAR-10) as a
way of aligning the various different generating distributions induced by federated learning. The
improvements demonstrated by our RGB-wise Wasserstein barycenter technique leads to question
of where else this framework can be applied. In future work we plan on exploring larger datasets
(e.g., ImageNet), other data modalities, and other FL algorithms. While an RGB-wise approach is
a technique for transforming images, we aim to develop new OT-based methods for transforming
temporal data. Furthermore, we aim to determine the extent of the benefits our approach in other
FL paradigms. For example, one question we aim to answer is if preprocessing data in the fashion
described above may help retain the accuracy of models trained with higher noise in different privacy
algorithms. While not an exhaustive list, these are some of the questions we aim to answer in our
future research.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré. Iterative
bregman projections for regularized transportation problems. SIAM Journal on Scientific Com-
puting, 37(2):A1111–A1138, 2015.

Yiqiang Chen, Xin Qin, Jindong Wang, Chaohui Yu, and Wen Gao. Fedhealth: A federated transfer
learning framework for wearable healthcare. IEEE Intelligent Systems, 35(4):83–93, 2020.

Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for do-
main adaptation. IEEE transactions on pattern analysis and machine intelligence, 39(9):1853–
1865, 2016.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Marco Cuturi and Arnaud Doucet. Fast computation of wasserstein barycenters. In International
conference on machine learning, pp. 685–693. PMLR, 2014.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning with the-
oretical guarantees: A model-agnostic meta-learning approach. Advances in Neural Information
Processing Systems, 33:3557–3568, 2020.

Farzan Farnia, Amirhossein Reisizadeh, Ramtin Pedarsani, and Ali Jadbabaie. An optimal transport
approach to personalized federated learning. IEEE Journal on Selected Areas in Information
Theory, 3(2):162–171, 2022.

Sira Ferradans, Nicolas Papadakis, Gabriel Peyré, and Jean-François Aujol. Regularized discrete
optimal transport. SIAM Journal on Imaging Sciences, 7(3):1853–1882, 2014.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanis-
las Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron,
Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet,
Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and
Titouan Vayer. Pot: Python optimal transport. Journal of Machine Learning Research, 22(78):
1–8, 2021. URL http://jmlr.org/papers/v22/20-451.html.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-
how easy is it to break privacy in federated learning? Advances in neural information processing
systems, 33:16937–16947, 2020.

Ian Goodfellow, Oriol Vinyals, and Andrew Saxe. Qualitatively characterizing neural network op-
timization problems. In International Conference on Learning Representations, 2015. URL
http://arxiv.org/abs/1412.6544.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Federated visual classification with real-world
data distribution. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part X 16, pp. 76–92. Springer, 2020.

Ahmed Imteaj, Urmish Thakker, Shiqiang Wang, Jian Li, and M Hadi Amini. A survey on federated
learning for resource-constrained iot devices. IEEE Internet of Things Journal, 9(1):1–24, 2021.

Alexey Kroshnin, Nazarii Tupitsa, Darina Dvinskikh, Pavel Dvurechensky, Alexander Gasnikov,
and Cesar Uribe. On the complexity of approximating wasserstein barycenters. In International
conference on machine learning, pp. 3530–3540. PMLR, 2019.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 10713–10722, 2021.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50–60, 2020.

Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and Jiashi Feng. No fear of heterogeneity:
Classifier calibration for federated learning with non-iid data. Advances in Neural Information
Processing Systems, 34:5972–5984, 2021.

11

http://jmlr.org/papers/v22/20-451.html
http://arxiv.org/abs/1412.6544


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Mem. Math. Phys. Acad. Royale
Sci., pp. 666–704, 1781.

Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi Albarqouni, Spyri-
don Bakas, Mathieu N Galtier, Bennett A Landman, Klaus Maier-Hein, et al. The future of digital
health with federated learning. NPJ digital medicine, 3(1):1–7, 2020.

Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE transactions on neu-
ral networks and learning systems, 32(8):3710–3722, 2020.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
IEEE Transactions on Neural Networks and Learning Systems, 2022.

Luis Caicedo Torres, Luiz Manella Pereira, and M Hadi Amini. A survey on optimal transport for
machine learning: Theory and applications. arXiv preprint arXiv:2106.01963, 2021.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. arXiv preprint arXiv:2002.06440, 2020.

Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun
Zeng, and Philip Yu. Generalizing to unseen domains: A survey on domain generalization. IEEE
Transactions on Knowledge and Data Engineering, 2022.

Guile Wu and Shaogang Gong. Collaborative optimization and aggregation for decentralized domain
generalization and adaptation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 6484–6493, 2021.

Wentai Wu, Ligang He, Weiwei Lin, and Carsten Maple. Fedprof: Selective federated learning
based on distributional representation profiling. IEEE Transactions on Parallel and Distributed
Systems, 34(6):1942–1953, 2023.

Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, and Fei Wang. Federated
learning for healthcare informatics. Journal of healthcare informatics research, 5:1–19, 2021.

Liling Zhang, Xinyu Lei, Yichun Shi, Hongyu Huang, and Chao Chen. Federated learning with
domain generalization. arXiv preprint arXiv:2111.10487, 2021.

Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Learning to generate novel
domains for domain generalization. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XVI 16, pp. 561–578. Springer, 2020.

A APPENDIX

A.1 PRIVACY CONCERNS

The concept of privacy is at the heart of federated learning. When introducing a novel approach that
shares information between different devices, this could open an attack vector for the recreation of
the original data. For example, when training a model using Federated Averaging over the gradients
of local models, Geiping et al. (2020) show that the local images can be reconstructed. With this
in mind, we asked ourselves about the vulnerability of computing the Wasserstein barycenters in
the fashion described. To compute a Wasserstein barycenter, we must solve several optimal trans-
port problems. Once solved, this mapping from probability distributions to the barycenter is not
invertible; reasons for non-invertibility include information loss when solving OT problems with
entropy-regularized formats and non-uniqueness of the solution of WBs. Furthermore, the RGB-
wise barycenters do not share information across the color channels, making it further impossible to
regenerate any source images. Therefore, distributing Wasserstein barycenters that are products of
non-invertible optimization problems ensures the privacy of the local agents’ data is not broken.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A.2 IMPLEMENTATION DETAILS

A.2.1 DETAILS ON TRAINING THE CNN

While some of the details have been mentioned in the body of the text, we reiterate some details here
and clarify others. First and foremost, for simulations where N = P (e.g., 100/100), we ran two
local training epochs before performing an accumulation step. When N ̸= P , we increase the local
training epochs to five. Regardless of which scenario we are simulating, we use a batch size of 16.
Moreover, all simulations start by initializing a custom CNN, described in 5, and ensuring that all
agents’ models have the same parameter values. Similarly, all agents use the Adam optimizer with
a learning rate of 1e−3 and the default beta values provided by PyTorch (betas=(0.9, 0.999)).

A.2.2 OPTIMAL TRANSPORT DETAILS

It is important to clarify the details regarding the algorithms used to solve the OT problem and to
compute Wasserstein barycenters. In this section of the appendix we will cover the details needed
to implement the parts of our preprocessing framework that use OT. First and foremost, the core of
our algorithm relies on computing the Wasserstein barycenter efficiently Benamou et al. (2015). We
leverage the python optimal transport package Flamary et al. (2021) which contains a solver for the
Bregman projection for regularized optimal transport. These methods require a cost function and a
regularization term. We use a quadratic cost function and a regularization term equal to 1e− 2. On
another note, a technique that can be used to reduce the computational requirement is to sample a
subset of pixel from each image and computer barycenters on this subset. In our work, we uniformly
sampled 250 pixels from the input images, which greatly reduced computational time (the difference
can be measured analytically using the time complexity shown in section 6).

Next, we will cover the details related to the projection step. To accomplish this, we leverage the
work of Ferradans et al. (2014); Courty et al. (2016) and the python optimal transport package. With
the global Wasserstein barycenter computed, we solve the entropic-regularized transport problem
using the Sinkhorn algorithm; this can be accomplished using the SinkhornTransport method of
python package. Similar to computing the barycenters, it is possible once again to select a subset
of the pixels to compute the transportation map. For this step we used a regularization parameter
of 1e − 1 and once again selected a subset of 250 pixels. With the transport model in hand, we
can transform the full image, yielding our transformed sample which will be used for training. The
mathematical details of these algorithms are covered in detail in the aforementioned papers.

A.3 ADDITIONAL SIMULATIONS

The results shown in the body of the work were obtained using a custom CNN model, described in
5. This CNN has a simple architecture that was initially a placeholder during the development of
our pipeline. During initial experimentation, results showed a surprising latent benefit of our pre-
processing work. It is self-evident that if you simplify a problem, finding its solution is also simpler
(e.g. using a kernel trick to linearize a non-linear problem); this principle explains what our prepro-
cessing approach accomplished. While it was expected that training a model in a federated learning
fashion would be faster and yield higher accuracy on the transformed data, the additional benefit
of being able to accomplish these results with a smaller model was uncovered during simulations
led to our decision to break the norm of using models such as ResNet or VGG. Nonetheless, in this
appendix section we introduce additional results and details regarding training a ResNet model in
the same fashion detailed in this work (see A.2 for implementation details such as hyperparameters).

First and foremost, we now describe the details of the architecture of the ResNet. The model is
composed of 8 convolutional layers and one, final, linear layer. Each convolutional layer contains
a batch normalization step and a ReLu activation. There are two residual connections between
a series of convolutional blocks and max pooling blocks which are used to scale the computed
feature maps to the desired shape. Figure 6 shows the architecture step-by-step. The ResNet model
contains approximately 6.5M parameters. It is nearly 6.2x larger than the custom convolutional
neural network used in the body of work, which contains about 1M parameters.

During our simulations with ResNet, the benefit of achieving higher accuracy with fewer commu-
nication rounds, all while using a smaller model, is pronounced. Zooming in on the case where
N = P = 5 (row one of table 3), using the smaller CNN took 35 rounds to reach 99.62% accuracy

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

3x3 conv, 64

3x3 conv, 128

image

3x3 conv, 128

3x3 conv, 128

2x2 max pool

3x3 conv, 256

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

2x2 max pool

2x2 max pool

4x4 max pool

fc 10

Figure 6: ResNet architecture.

Table 3: This table contains the results of simulations ran using the ResNet model.

Communication Rounds Testing Accuracy
Client (N/P) ResNet CNN ResNet CNN

5/5 554 35 98.61 99.62
10/10 200 70 95.45 99.33
20/20 200 200 92.13 99.36

while it took the ResNet 554 communication rounds to max out at 98.61%. To compare, the ResNet,
with 6.2x more parameters, required approximately 15.83x more communication rounds to reach
98.61% (1.01% less than the CNN). To ensure these results could be used for preliminary extrapola-
tions of the minimum number of communication rounds until convergence of other simulations, we
let the model be trained until its accuracy during training could not surpass a prior maximum within
at least 100 communication rounds.

The results presented in table 3, are simulations using early stopping because the predicted minimum
number of communication rounds needed to achieve equivalent testing accuracies obtained by the
CNN were astoundingly larger. Using the multiple of 15.83x mentioned prior, we predict that for
N = P = 10 and N = P = 20, it would take a minimum of 1, 109 and 3, 166 communication
rounds, respectively, to achieve comparable results to the custom CNN. For these reasons, rows
two and three of our table shows results that were stopped before full convergence. While some
accuracy was still left on the table for those two cases, it still provides sufficient data to empirically
demonstrate how using the smaller model was the better approach.

14


	Introduction
	Related Works
	Preliminaries
	Federated Learning
	Optimal Transport

	Optimal Transport-based Preprocessing
	Experiments and Results
	Complexity Analysis
	Conclusion
	Future Work
	Appendix
	Privacy Concerns
	Implementation Details
	Details on Training the CNN
	Optimal Transport Details

	Additional Simulations


